\(\int \frac {x^2}{a+b \arccos (c x)} \, dx\) [158]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 14, antiderivative size = 121 \[ \int \frac {x^2}{a+b \arccos (c x)} \, dx=\frac {\operatorname {CosIntegral}\left (\frac {a+b \arccos (c x)}{b}\right ) \sin \left (\frac {a}{b}\right )}{4 b c^3}+\frac {\operatorname {CosIntegral}\left (\frac {3 (a+b \arccos (c x))}{b}\right ) \sin \left (\frac {3 a}{b}\right )}{4 b c^3}-\frac {\cos \left (\frac {a}{b}\right ) \text {Si}\left (\frac {a+b \arccos (c x)}{b}\right )}{4 b c^3}-\frac {\cos \left (\frac {3 a}{b}\right ) \text {Si}\left (\frac {3 (a+b \arccos (c x))}{b}\right )}{4 b c^3} \]

[Out]

-1/4*cos(a/b)*Si((a+b*arccos(c*x))/b)/b/c^3-1/4*cos(3*a/b)*Si(3*(a+b*arccos(c*x))/b)/b/c^3+1/4*Ci((a+b*arccos(
c*x))/b)*sin(a/b)/b/c^3+1/4*Ci(3*(a+b*arccos(c*x))/b)*sin(3*a/b)/b/c^3

Rubi [A] (verified)

Time = 0.13 (sec) , antiderivative size = 121, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.357, Rules used = {4732, 4491, 3384, 3380, 3383} \[ \int \frac {x^2}{a+b \arccos (c x)} \, dx=\frac {\sin \left (\frac {a}{b}\right ) \operatorname {CosIntegral}\left (\frac {a+b \arccos (c x)}{b}\right )}{4 b c^3}+\frac {\sin \left (\frac {3 a}{b}\right ) \operatorname {CosIntegral}\left (\frac {3 (a+b \arccos (c x))}{b}\right )}{4 b c^3}-\frac {\cos \left (\frac {a}{b}\right ) \text {Si}\left (\frac {a+b \arccos (c x)}{b}\right )}{4 b c^3}-\frac {\cos \left (\frac {3 a}{b}\right ) \text {Si}\left (\frac {3 (a+b \arccos (c x))}{b}\right )}{4 b c^3} \]

[In]

Int[x^2/(a + b*ArcCos[c*x]),x]

[Out]

(CosIntegral[(a + b*ArcCos[c*x])/b]*Sin[a/b])/(4*b*c^3) + (CosIntegral[(3*(a + b*ArcCos[c*x]))/b]*Sin[(3*a)/b]
)/(4*b*c^3) - (Cos[a/b]*SinIntegral[(a + b*ArcCos[c*x])/b])/(4*b*c^3) - (Cos[(3*a)/b]*SinIntegral[(3*(a + b*Ar
cCos[c*x]))/b])/(4*b*c^3)

Rule 3380

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[SinIntegral[e + f*x]/d, x] /; FreeQ[{c, d,
 e, f}, x] && EqQ[d*e - c*f, 0]

Rule 3383

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CosIntegral[e - Pi/2 + f*x]/d, x] /; FreeQ
[{c, d, e, f}, x] && EqQ[d*(e - Pi/2) - c*f, 0]

Rule 3384

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[c*(f/d) + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[c*(f/d) + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 4491

Int[Cos[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sin[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int[E
xpandTrigReduce[(c + d*x)^m, Sin[a + b*x]^n*Cos[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0]
&& IGtQ[p, 0]

Rule 4732

Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Dist[-(b*c^(m + 1))^(-1), Subst[Int[x^n*C
os[-a/b + x/b]^m*Sin[-a/b + x/b], x], x, a + b*ArcCos[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {\cos ^2\left (\frac {a}{b}-\frac {x}{b}\right ) \sin \left (\frac {a}{b}-\frac {x}{b}\right )}{x} \, dx,x,a+b \arccos (c x)\right )}{b c^3} \\ & = \frac {\text {Subst}\left (\int \left (\frac {\sin \left (\frac {3 a}{b}-\frac {3 x}{b}\right )}{4 x}+\frac {\sin \left (\frac {a}{b}-\frac {x}{b}\right )}{4 x}\right ) \, dx,x,a+b \arccos (c x)\right )}{b c^3} \\ & = \frac {\text {Subst}\left (\int \frac {\sin \left (\frac {3 a}{b}-\frac {3 x}{b}\right )}{x} \, dx,x,a+b \arccos (c x)\right )}{4 b c^3}+\frac {\text {Subst}\left (\int \frac {\sin \left (\frac {a}{b}-\frac {x}{b}\right )}{x} \, dx,x,a+b \arccos (c x)\right )}{4 b c^3} \\ & = -\frac {\cos \left (\frac {a}{b}\right ) \text {Subst}\left (\int \frac {\sin \left (\frac {x}{b}\right )}{x} \, dx,x,a+b \arccos (c x)\right )}{4 b c^3}-\frac {\cos \left (\frac {3 a}{b}\right ) \text {Subst}\left (\int \frac {\sin \left (\frac {3 x}{b}\right )}{x} \, dx,x,a+b \arccos (c x)\right )}{4 b c^3}+\frac {\sin \left (\frac {a}{b}\right ) \text {Subst}\left (\int \frac {\cos \left (\frac {x}{b}\right )}{x} \, dx,x,a+b \arccos (c x)\right )}{4 b c^3}+\frac {\sin \left (\frac {3 a}{b}\right ) \text {Subst}\left (\int \frac {\cos \left (\frac {3 x}{b}\right )}{x} \, dx,x,a+b \arccos (c x)\right )}{4 b c^3} \\ & = \frac {\operatorname {CosIntegral}\left (\frac {a+b \arccos (c x)}{b}\right ) \sin \left (\frac {a}{b}\right )}{4 b c^3}+\frac {\operatorname {CosIntegral}\left (\frac {3 (a+b \arccos (c x))}{b}\right ) \sin \left (\frac {3 a}{b}\right )}{4 b c^3}-\frac {\cos \left (\frac {a}{b}\right ) \text {Si}\left (\frac {a+b \arccos (c x)}{b}\right )}{4 b c^3}-\frac {\cos \left (\frac {3 a}{b}\right ) \text {Si}\left (\frac {3 (a+b \arccos (c x))}{b}\right )}{4 b c^3} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.13 (sec) , antiderivative size = 91, normalized size of antiderivative = 0.75 \[ \int \frac {x^2}{a+b \arccos (c x)} \, dx=-\frac {-\operatorname {CosIntegral}\left (\frac {a}{b}+\arccos (c x)\right ) \sin \left (\frac {a}{b}\right )-\operatorname {CosIntegral}\left (3 \left (\frac {a}{b}+\arccos (c x)\right )\right ) \sin \left (\frac {3 a}{b}\right )+\cos \left (\frac {a}{b}\right ) \text {Si}\left (\frac {a}{b}+\arccos (c x)\right )+\cos \left (\frac {3 a}{b}\right ) \text {Si}\left (3 \left (\frac {a}{b}+\arccos (c x)\right )\right )}{4 b c^3} \]

[In]

Integrate[x^2/(a + b*ArcCos[c*x]),x]

[Out]

-1/4*(-(CosIntegral[a/b + ArcCos[c*x]]*Sin[a/b]) - CosIntegral[3*(a/b + ArcCos[c*x])]*Sin[(3*a)/b] + Cos[a/b]*
SinIntegral[a/b + ArcCos[c*x]] + Cos[(3*a)/b]*SinIntegral[3*(a/b + ArcCos[c*x])])/(b*c^3)

Maple [A] (verified)

Time = 0.47 (sec) , antiderivative size = 102, normalized size of antiderivative = 0.84

method result size
derivativedivides \(\frac {-\frac {\operatorname {Si}\left (3 \arccos \left (c x \right )+\frac {3 a}{b}\right ) \cos \left (\frac {3 a}{b}\right )}{4 b}+\frac {\operatorname {Ci}\left (3 \arccos \left (c x \right )+\frac {3 a}{b}\right ) \sin \left (\frac {3 a}{b}\right )}{4 b}-\frac {\operatorname {Si}\left (\arccos \left (c x \right )+\frac {a}{b}\right ) \cos \left (\frac {a}{b}\right )}{4 b}+\frac {\operatorname {Ci}\left (\arccos \left (c x \right )+\frac {a}{b}\right ) \sin \left (\frac {a}{b}\right )}{4 b}}{c^{3}}\) \(102\)
default \(\frac {-\frac {\operatorname {Si}\left (3 \arccos \left (c x \right )+\frac {3 a}{b}\right ) \cos \left (\frac {3 a}{b}\right )}{4 b}+\frac {\operatorname {Ci}\left (3 \arccos \left (c x \right )+\frac {3 a}{b}\right ) \sin \left (\frac {3 a}{b}\right )}{4 b}-\frac {\operatorname {Si}\left (\arccos \left (c x \right )+\frac {a}{b}\right ) \cos \left (\frac {a}{b}\right )}{4 b}+\frac {\operatorname {Ci}\left (\arccos \left (c x \right )+\frac {a}{b}\right ) \sin \left (\frac {a}{b}\right )}{4 b}}{c^{3}}\) \(102\)

[In]

int(x^2/(a+b*arccos(c*x)),x,method=_RETURNVERBOSE)

[Out]

1/c^3*(-1/4*Si(3*arccos(c*x)+3*a/b)*cos(3*a/b)/b+1/4*Ci(3*arccos(c*x)+3*a/b)*sin(3*a/b)/b-1/4*Si(arccos(c*x)+a
/b)*cos(a/b)/b+1/4*Ci(arccos(c*x)+a/b)*sin(a/b)/b)

Fricas [F]

\[ \int \frac {x^2}{a+b \arccos (c x)} \, dx=\int { \frac {x^{2}}{b \arccos \left (c x\right ) + a} \,d x } \]

[In]

integrate(x^2/(a+b*arccos(c*x)),x, algorithm="fricas")

[Out]

integral(x^2/(b*arccos(c*x) + a), x)

Sympy [F]

\[ \int \frac {x^2}{a+b \arccos (c x)} \, dx=\int \frac {x^{2}}{a + b \operatorname {acos}{\left (c x \right )}}\, dx \]

[In]

integrate(x**2/(a+b*acos(c*x)),x)

[Out]

Integral(x**2/(a + b*acos(c*x)), x)

Maxima [F]

\[ \int \frac {x^2}{a+b \arccos (c x)} \, dx=\int { \frac {x^{2}}{b \arccos \left (c x\right ) + a} \,d x } \]

[In]

integrate(x^2/(a+b*arccos(c*x)),x, algorithm="maxima")

[Out]

integrate(x^2/(b*arccos(c*x) + a), x)

Giac [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 172, normalized size of antiderivative = 1.42 \[ \int \frac {x^2}{a+b \arccos (c x)} \, dx=\frac {\cos \left (\frac {a}{b}\right )^{2} \operatorname {Ci}\left (\frac {3 \, a}{b} + 3 \, \arccos \left (c x\right )\right ) \sin \left (\frac {a}{b}\right )}{b c^{3}} - \frac {\cos \left (\frac {a}{b}\right )^{3} \operatorname {Si}\left (\frac {3 \, a}{b} + 3 \, \arccos \left (c x\right )\right )}{b c^{3}} - \frac {\operatorname {Ci}\left (\frac {3 \, a}{b} + 3 \, \arccos \left (c x\right )\right ) \sin \left (\frac {a}{b}\right )}{4 \, b c^{3}} + \frac {\operatorname {Ci}\left (\frac {a}{b} + \arccos \left (c x\right )\right ) \sin \left (\frac {a}{b}\right )}{4 \, b c^{3}} + \frac {3 \, \cos \left (\frac {a}{b}\right ) \operatorname {Si}\left (\frac {3 \, a}{b} + 3 \, \arccos \left (c x\right )\right )}{4 \, b c^{3}} - \frac {\cos \left (\frac {a}{b}\right ) \operatorname {Si}\left (\frac {a}{b} + \arccos \left (c x\right )\right )}{4 \, b c^{3}} \]

[In]

integrate(x^2/(a+b*arccos(c*x)),x, algorithm="giac")

[Out]

cos(a/b)^2*cos_integral(3*a/b + 3*arccos(c*x))*sin(a/b)/(b*c^3) - cos(a/b)^3*sin_integral(3*a/b + 3*arccos(c*x
))/(b*c^3) - 1/4*cos_integral(3*a/b + 3*arccos(c*x))*sin(a/b)/(b*c^3) + 1/4*cos_integral(a/b + arccos(c*x))*si
n(a/b)/(b*c^3) + 3/4*cos(a/b)*sin_integral(3*a/b + 3*arccos(c*x))/(b*c^3) - 1/4*cos(a/b)*sin_integral(a/b + ar
ccos(c*x))/(b*c^3)

Mupad [F(-1)]

Timed out. \[ \int \frac {x^2}{a+b \arccos (c x)} \, dx=\int \frac {x^2}{a+b\,\mathrm {acos}\left (c\,x\right )} \,d x \]

[In]

int(x^2/(a + b*acos(c*x)),x)

[Out]

int(x^2/(a + b*acos(c*x)), x)